porno
porno porno porno izle porno
Gene Therapy Net is the web resource for patients and professionals interested in gene therapy. The objectives of Gene Therapy Net are to be the information resource for basic and clinical research in gene therapy, cell therapy, and genetic vaccines, and to serve as a network in the exchange of information and news related to above areas. In addition, Gene Therapy Net provides an overview for sponsors and researchers of the different international regulations and guidelines associated with clinical gene therapy trials.


 
Posted on: 9 October 2014, source: healio.com
A majority of boys with X-linked severe combined immunodeficiency experienced T-cell recovery and infection clearance after undergoing gene therapy with a self-inactivating gamma-retrovirus vector, according to study results. Salima Hacein-Bey-Abina, PharmD, PhD, of the department of biotherapy at Hôpital Necker – Enfants Malades in Paris, and colleagues sought to modify a Moloney murine leukemia virus-based gamma-retrovirus vector that expressed interleukin-2 receptor gamma-chain complementary DNA

Register to read more...

 
Posted on: 28 August 2014, source: Chemistry World
Dutch scientists have built a simple model of viruses’ protective coats in an attempt to create viral mimics that could fight diseases, as opposed to causing them. Rather than copying natural proteins, Renko de Vries from Wageningen University and his team designed and built a three-part protein from scratch that self-assembles around DNA.
‘The protein is exceedingly simple in its primary and secondary structure, yet captures the essence of self-assembly for the tobacco mosaic virus,’ de Vries tells Chemistry World. This knowledge could enable superior vehicles for getting DNA and RNA into cells, for example for gene therapy, and templates for improved DNA machines. ‘You could probably do the same with supramolecular chemistry,’ de Vries adds, ‘but the protein approach has the beauty that you can expand in the direction of synthetic biology.’

Register to read more...

 
Posted on: 21 August 2014, source: Sci-News.com
Dr Juliana Small of the University of Pennsylvania, Drs Raj Kurupati, Xianqyang Zhou and their colleagues from the Wistar Institute have developed a novel adenoviral vector for delivery of multiple transgenes.

Register to read more...

 
Posted on: 6 August 2014, source: The Independent
Scientists have performed a “seamless” correction to a faulty gene behind an inherited form of anaemia using a revolutionary new technique in genome editing that could transform the treatment of many genetic diseases. Two mutations in the haemoglobin gene of a patient with beta thalassemia – which can cause severe anaemia – were corrected without any errors using the Crispr technique of genome editing, the researchers said. The experiment involved converting the patient’s skin cells into stem cells in the laboratory so that the faulty gene could be corrected before the stem cells were allowed to mature into red blood cells. Without the genome correction, the red cells would have become deformed and sickle-shaped as a result of the defective haemoglobin gene.

Register to read more...

 
Posted on: 1 August 2014, source: WNCN
A new technology that allows genes to be injected into hearts with damaged electrical systems may replace the need for pacemaker implants in humans in the future. In the United States alone, there are more than 500,000 patients that get pacemaker implants annually. When the batteries on the Pacemakers run out in seven to 10 years, another surgery is required to implant a new device.

Register to read more...

 
Posted on: 1 July 2014, source: European Research Media Center
New virus serotypes are safely used as ‘DNA transporters’ to successfully deliver genes to deficient cells. Between 30 and 40 million people in Europe suffer from rare diseases—many of them children. As most of these diseases have genetic origins, gene therapy is a major hope for their future cure. Until now, however, there have been very few successful trials. Now, the EU-funded project AIPGENE, due to be completed in 2014, may have made significant progress in a gene therapy approach.
The project focussed on the genetic liver disorder, Acute Intermittent Porphyria (AIP). Through an early stage clinical trial, in phase I, it demonstrated the viability of a new approach, based on a so-called, adeno-associated vector (AAV). This is a ‘DNA transporter’ derived from a type of virus and carries the therapeutic gene to liver cells, known as hepatocytes.

Register to read more...

 
Gene Therapy Poll
The market approval of gene therapy product Glybera in Europe will accelerate regulatory approvals of other gene medicines
 
Upcoming Events
Gene Therapy Literature
Scroll through the latest articles in gene therapy scientific journals.
Recent early view article in Journal of Gene Medicine: